Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality §8-1. Orthogonal Complements and Projections

 $\begin{tabular}{ll} Le Chen^1 \\ Emory University, 2021 Spring \end{tabular}$

(last updated on 01/25/2021)

Orthogonal Bases

The Orthogonal Complement U^\perp

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

Orthogonal Bases

The Orthogonal Complement U

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

Orthogonality Basis

Definition (Orthogonality)

- ▶ Let $\vec{x}, \vec{y} \in \mathbb{R}^n$. We say the \vec{x} and \vec{y} are orthogonal if $\vec{x} \cdot \vec{y} = 0$.
- ▶ More generally, $X = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\} \subseteq \mathbb{R}^n$ is an orthogonal set if each $\vec{x_i}$ is nonzero, and every pair of distinct vectors of X is orthogonal, i.e., $\vec{x}_i \cdot \vec{x}_j = 0$ for all $i \neq j, 1 \leq i, j \leq k$.
- ▶ A set $X = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\} \subseteq \mathbb{R}^n$ is an orthogonal set if X is an orthogonal set of unit vectors, i.e., $||\vec{x}_i|| = 1$ for all i, $1 \le i \le k$.

Definition (Linearly Independence)

Let V be a vector space and $S = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ a subset of V. The set S is linearly independent if the following condition holds:

$$s_1\vec{x}_1+s_2\vec{x}_2+\dots+s_k\vec{x}_k=\vec{0}\quad \Rightarrow \quad s_1=s_2=\dots=s_k=0.$$

Lemma (Independent Lemma)

Let V be a vector space and $S = \{v_1, v_2, \dots, v_k\}$ an independent subset of V. If \mathbf{u} is a vector in V, but $\mathbf{u} \not\in \operatorname{span}(S)$, then $S' = \{v_1, v_2, \dots, v_k, \mathbf{u}\}$ is independent.

— v.s. —

Lemma (Orthogonal Lemma)

Suppose $\{\vec{f}_1, \vec{f}_2, \dots, \vec{f}_m\}$ is an orthogonal subset of \mathbb{R}^n , and suppose $\vec{x} \in \mathbb{R}^n$. Define

$$\vec{f}_{m+1} = \vec{x} - \frac{\vec{x} \cdot \vec{f}_1}{||\vec{f}_1||^2} \vec{f}_1 - \frac{\vec{x} \cdot \vec{f}_2}{||\vec{f}_2||^2} \vec{f}_2 - \dots - \frac{\vec{x} \cdot \vec{f}_m}{||\vec{f}_m||^2} \vec{f}_m.$$

Then

- 1. $\vec{f}_{m+1} \cdot \vec{f}_j = 0$ for all $j, 1 \leq j \leq m$.
- 2. If $\vec{x} \not\in \text{span}\{\vec{f}_1, \vec{f}_2, \dots, \vec{f}_m\}$, then $\vec{f}_{m+1} \neq \vec{0}$, and $\{\vec{f}_1, \vec{f}_2, \dots, \vec{f}_m, \vec{f}_{m+1}\}$ is an orthogonal set.

Proof. (of orthogonal lemma)

(1) For any
$$1 \le k \le m$$

$$x \le m$$

$$\leq$$
 m

 $= \vec{x} \cdot \vec{f}_k - \frac{\vec{x} \cdot \vec{f}_k}{||\vec{f}_k||_2} \vec{f}_k \cdot \vec{f}_k$

 $= \vec{\mathbf{x}} \cdot \vec{\mathbf{f}}_{1r} - \vec{\mathbf{x}} \cdot \vec{\mathbf{f}}_{1r} = 0.$

 $\vec{f}_{m+1} \cdot \vec{f}_k = \left(\vec{x} - \frac{\vec{x} \cdot \vec{f}_1}{||\vec{f}_1||^2} \vec{f}_1 - \frac{\vec{x} \cdot \vec{f}_2}{||\vec{f}_2||^2} \vec{f}_2 - \dots - \frac{\vec{x} \cdot \vec{f}_m}{||\vec{f}_m||^2} \vec{f}_m \right) \cdot \vec{f}_k$

 $=\vec{x}\cdot\vec{f}_k-\frac{\vec{x}\cdot\vec{f}_1}{||\vec{f}_1||^2}\vec{f}_1\cdot\vec{f}_k-\frac{\vec{x}\cdot\vec{f}_2}{||\vec{f}_0||^2}\vec{f}_2\cdot\vec{f}_k-\cdots-\frac{\vec{x}\cdot\vec{f}_m}{||\vec{f}_0||^2}\vec{f}_m\cdot\vec{f}_k$

(2) Since $\{\vec{f}_1,\cdots,\vec{f}_m\}$ are independent, by the unique representation theorem, $\vec{x} \in \text{span}\{\vec{f}_1,\vec{f}_2,\ldots,\vec{f}_m\}$, iff there exists unique representation for \vec{x}

$$\vec{x} = a_1 \vec{f}_1 + \dots + a_m \vec{f}_m.$$

Using the fact that $\{\vec{f}_1, \dots, \vec{f}_m\}$ is orthogonal, one finds that

$$a_i = \frac{\vec{x} \cdot \vec{f}_i}{||\vec{f}_i||^2}.$$

In other words,

$$\vec{x} \in \mathrm{span}\{\vec{f}_1, \cdots, \vec{f}_m\} \quad \Longleftrightarrow \quad \vec{f}_{m+1} = \vec{x} - \frac{\vec{x} \cdot \vec{f}_1}{||\vec{f}_1||^2} \vec{f}_1 - \frac{\vec{x} \cdot \vec{f}_2}{||\vec{f}_2||^2} \vec{f}_2 - \cdots - \frac{\vec{x} \cdot \vec{f}_m}{||\vec{f}_m||^2} \vec{f}_m = \vec{0}.$$

Now, $\vec{x} \not\in \text{span}\{\vec{f}_1, \dots, \vec{f}_m\}$ implies that $\vec{f}_{m+1} \neq \vec{0}$.

Finally, $\{\vec{f}_1,\vec{f}_2,\ldots,\vec{f}_m,\vec{f}_{m+1}\}$ is orthogonal thanks to (1).

Theorem

Let U be a subspace of \mathbb{R}^n .

- 1. Every orthogonal subset $\{\vec{f}_1,\vec{f}_2,\ldots,\vec{f}_m\}$ of U is a subset of an orthogonal basis of U.
- 2. U has an orthogonal basis.

Proof.

Algorithm 1: Proof of part (1) of Theorem Input : An orthogonal set $\{\vec{f}_1, \vec{f}_2, \dots, \vec{f}_m\} \subseteq U \subseteq \mathbb{R}^n$ $m \to n$; while $\operatorname{span}\{\vec{f}_1, \dots, \vec{f}_n\} \neq U$ do Pick up arbitrary $\vec{x} \in U \setminus \operatorname{span}\{\vec{f}_1, \dots, \vec{f}_n\}$; Let \vec{f}_{n+1} be given by the Orthogonal Lemma; Then $\{\vec{f}_1, \dots, \vec{f}_n, \vec{f}_{n+1}\}$ is an orthogonal set; $n+1 \to n$; end Output: An orthogonal basis $\{\vec{f}_1, \dots, \vec{f}_n\}$ of U

(2) If $U = {\vec{0}}$, done. Otherwise, find an arbitrary nonzero vector in u and run the algorithm in (1).

Theorem (Gram-Schmidt Orthogonalization Algorithm)

Let U be a subset of \mathbb{R}^n and let $\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_m\}$ be a basis of U. Let

$$\vec{f}_1 = \vec{x}_1$$
, and for each j, $2 \le j \le m$, let

 $ec{
m f}_{
m j} = ec{
m x}_{
m j} - rac{ec{
m x}_{
m j} \cdot ext{f}_{
m 1}}{||ec{
m f}_{
m j}||^2} ec{
m f}_{
m 1} - rac{ec{
m x}_{
m j} \cdot ext{f}_{
m 2}}{||ec{
m f}_{
m p}||^2} ec{
m f}_{
m 2} - \cdots - rac{ec{
m x}_{
m j} \cdot ext{f}_{
m j-1}}{||ec{
m f}_{
m j-1}||^2} ec{
m f}_{
m j-1}.$

Then $\{\vec{f}_1, \vec{f}_2, \dots, \vec{f}_m\}$ is an orthogonal basis of U, and

then $\{1_1, 1_2, \dots, 1_m\}$ is an orthogonal basis of \mathbb{C} , and

 $\operatorname{span}\{\vec{f}_1,\vec{f}_2,\ldots,\vec{f}_i\} = \operatorname{span}\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_i\} \quad \forall j=1,\cdots,m.$

Algorithm 2: Gram-Schmidt Orthogonalization Algorithm

Input: A basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\} \subset U \subset \mathbb{R}^n$

Input: A basis
$$\{\dot{\mathbf{x}}_1,\dot{\mathbf{x}}_2,\ldots,\dot{\mathbf{x}}_m\}\subseteq \mathbb{U}\subseteq\mathbb{R}^n$$

$$\vec{\mathbf{f}}_1\leftarrow\vec{\mathbf{x}}_1;$$

Output: An orthogonal basis $\{\vec{f}_1, \dots, \vec{f}_m\}$ of U s.t. $\operatorname{span}\{\vec{f}_1, \vec{f}_2, \dots, \vec{f}_i\} = \operatorname{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_i\}$

for all $j = 1, \dots, m$.

end

 $\vec{\mathbf{f}}_1 \leftarrow \vec{\mathbf{x}}_1;$

for $j \leftarrow 2$ to m do

 $\vec{f}_j \leftarrow \vec{x}_j - \frac{\vec{x}_j \cdot \vec{f}_1}{||\vec{f}_1||^2} \vec{f}_1 - \frac{\vec{x}_j \cdot \vec{f}_2}{||\vec{f}_2||^2} \vec{f}_2 - \dots - \frac{\vec{x}_j \cdot \vec{f}_{j-1}}{||\vec{f}_{j-1}||^2} \vec{f}_{j-1}.$

$$\begin{array}{lcl} \text{span}\{\vec{a}_1,\vec{a}_2,\vec{a}_3\} & = & \text{span}\{\vec{b}_1,\vec{b}_2,\vec{b}_3\} \\ \\ \text{basis} & \to & \text{orthogonal basis} \end{array}$$

Problem

Let

$$ec{\mathbf{x}}_1 = \left[egin{array}{c} 1 \ 0 \ 1 \ 0 \end{array}
ight], \quad ec{\mathbf{x}}_2 = \left[egin{array}{c} 1 \ 0 \ 1 \ 1 \end{array}
ight], \quad ext{and} \quad ec{\mathbf{x}}_3 = \left[egin{array}{c} 1 \ 1 \ 0 \ 0 \end{array}
ight]$$

and let $U = \text{span}\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$. We use the Gram-Schmidt Orthogonalization Algorithm to construct an orthogonal basis B of U.

Proof.

First $\vec{f}_1 = \vec{x}_1$. Next,

$$\vec{\mathbf{f}}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \frac{2}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Finally,

$$ec{\mathrm{f}}_{3} = \left[egin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array}
ight] - rac{1}{2} \left[egin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array}
ight] - rac{0}{1} \left[egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}
ight] = \left[egin{array}{c} 1/2 \\ 1 \\ -1/2 \\ 0 \end{array}
ight].$$

Therefore,

$$\left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1/2\\1\\-1/2\\0 \end{bmatrix} \right\}$$

is an orthogonal basis of U. However, it is sometimes more convenient to deal with vectors having integer entries, in which case we take

$$\mathbf{B} = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix} \right\}.$$

(Orthogonality of the set is not affected by multiplying vectors in the set by nonzero scalars.)

Orthogonal Bases

The Orthogonal Complement U^\perp

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

The Orthogonal Complement U^{\perp}

Definition

Let U be a subspace of \mathbb{R}^n . The orthogonal complement of U, called U perp, is denoted U^{\perp} and is defined as

$$U^{\perp} = \{ \vec{x} \in \mathbb{R}^n \mid \vec{x} \cdot \vec{y} = 0 \text{ for all } \vec{y} \in U \}.$$

Example

Let
$$U = \operatorname{span} \left\{ \begin{bmatrix} -2\\3\\1 \end{bmatrix}, \begin{bmatrix} 5\\-1\\2 \end{bmatrix} \right\}$$
, and suppose $\vec{v} = \begin{bmatrix} a\\b\\c \end{bmatrix} \in U^{\perp}$. Then $-2a + 3b + c = 0$ and $5a - b + 2c = 0$.

This system of two equations in three variables has solution

$$\vec{\mathbf{v}} = \begin{vmatrix} -7 \\ -9 \\ 13 \end{vmatrix} \mathbf{t}, \quad \forall \mathbf{t} \in \mathbb{R},$$

which is noting but a line passing through origin and perpendicular with the plane U.

Theorem (Properties of the Orthogonal Complement)

Let U be a subspace of \mathbb{R}^n .

- 1. U^{\perp} is a subspace of \mathbb{R}^{n} .
- 2. $\{\vec{0}\}^{\perp} = \mathbb{R}^{n} \text{ and } (\mathbb{R}^{n})^{\perp} = \{\vec{0}\}.$
- 3. If $U = \text{span}\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_m\}$, then

$$U^{\perp} = \{ \vec{x} \in \mathbb{R}^n \mid \vec{x} \cdot \vec{y}_j = 0 \text{ for } j = 1, 2, \dots, m \}.$$

Proof.

- 1. This is a standard subspace proof and is left as an exercise.
- 2. Here, $\vec{0}$ is the zero vector of \mathbb{R}^n . Since $\vec{x} \cdot \vec{0} = 0$ for all $\vec{x} \in \mathbb{R}^n$, $\mathbb{R}^n \subseteq \{\vec{0}\}^{\perp}$. Since $\{\vec{0}\}^{\perp} \subseteq \mathbb{R}^n$, the equality follows, i.e., $\{\vec{0}\}^{\perp} = \mathbb{R}^n$.

Again, since $\vec{x} \cdot \vec{0} = 0$ for all $\vec{x} \in \mathbb{R}^n$, $\vec{0} \in (\mathbb{R}^n)^{\perp}$, so $\{\vec{0}\} \subseteq (\mathbb{R}^n)^{\perp}$. Suppose $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$. Since $\vec{x} \cdot \vec{x} = ||\vec{x}||^2$ and $\vec{x} \neq \vec{0}$, $\vec{x} \cdot \vec{x} \neq 0$, so $\vec{x} \notin (\mathbb{R}^n)^{\perp}$. Therefore, $\{\vec{0}\}^c \subseteq ((\mathbb{R}^n)^{\perp})^c$, or equivalently, $(\mathbb{R}^n)^{\perp} \subseteq \{\vec{0}\}$. Thus $(\mathbb{R}^n)^{\perp} = \{\vec{0}\}$.

3. Let $X = {\vec{x} \in \mathbb{R}^n \mid \vec{x} \cdot \vec{y}_j = 0 \text{ for } j = 1, 2, \dots, m}.$

"U\$^\subseteq X": Suppose that \$\vec{v} \in U\$^\subseteq. Then \$\vec{v}\$ is orthogonal to every vector in U; in particular, \$\vec{v} \cdot \vec{y}_j = 0\$ for \$j = 1, 2, \ldots, m\$ since each such \$\vec{y}_j\$ is in U. Therefore, \$\vec{v} \in X\$. This proves that \$U^\subseteq X\$.

" $X \subseteq U^{\perp}$ ": Now suppose that $\vec{v} \in X$ and $\vec{u} \in U$. Then $\vec{u} = a_1 \vec{y}_1 + a_2 \vec{y}_2 + \cdots + a_m \vec{y}_m$ for some $a_1, a_2, \ldots, a_m \in \mathbb{R}$, and so

$$\begin{split} \vec{v} \cdot \vec{u} &= \vec{v} \cdot (a_1 \vec{y}_1 + a_2 \vec{y}_2 + \dots + a_m \vec{y}_m) \\ &= \vec{v} \cdot (a_1 \vec{y}_1) + \vec{v} \cdot (a_2 \vec{y}_2) + \dots + \vec{v} \cdot (a_m \vec{y}_m) \\ &= a_1 (\vec{v} \cdot \vec{y}_1) + a_2 (\vec{v} \cdot \vec{y}_2) + \dots + a_m (\vec{v} \cdot \vec{y}_m). \end{split}$$

Since $\vec{v} \in X$, $\vec{v} \cdot \vec{y}_j = 0$ for all $j, 1 \leq j \leq m$. Therefore, $\vec{v} \cdot \vec{u} = 0$, and thus $X \subseteq U^{\perp}$.

Finally, since $U^{\perp} \subseteq X$ and $X \subseteq U^{\perp}$, we see that $U^{\perp} = X$.

Problem

Let

$$U = \operatorname{span} \left\{ \begin{bmatrix} 0 \\ -1 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \\ 4 \end{bmatrix} \right\}.$$

Find U^{\perp} by finding a basis of U^{\perp} .

Solution

$$\mathbf{U}^{\perp} = \left\{ \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} \in \mathbb{R}^4 \ \middle| \ \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -1 \\ 3 \\ 2 \end{bmatrix} = 0 \quad \text{and} \quad \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \\ 4 \end{bmatrix} = 0 \right\}.$$

This leads to the system of two equation in four variables

$$-b + 3c + 2d = 0$$
$$2a + b + 4d = 0$$

$$\mathbf{A} = \begin{bmatrix} 0 & -1 & 3 & 2 & 0 \\ 2 & 1 & 0 & 4 & 0 \end{bmatrix} \to \cdots \to \begin{bmatrix} 1 & 0 & 3/2 & 3 & 0 \\ 0 & 1 & -3 & -2 & 0 \end{bmatrix}$$

Therefore,

$$U^{\perp} = \left\{ \begin{bmatrix} -\frac{3}{2}s - 3t \\ 3s + 2t \\ s \\ t \end{bmatrix} \in \mathbb{R}^4 \middle| s, t \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{bmatrix} -\frac{3}{2} \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Since the set
$$B = \left\{ \begin{bmatrix} -\frac{2}{2} \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 is independent and spans U^{\perp} , B is a

basis of U^{\perp} .

Remark

Notice that $U^{\perp} = null(A)$, where A is the matrix whose rows are a spanning subset of U.

Orthogonal Bases

The Orthogonal Complement U

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

Definition of Orthogonal Projection

Theorem (Projection Formula)

Suppose \vec{u} and \vec{v} are vectors in \mathbb{R}^3 , $\vec{v} \neq \vec{0}$. Then the projection of \vec{u} on \vec{v} , denoted as $\operatorname{proj}_{\vec{v}}(\vec{u})$, is equal to

$$\operatorname{proj}_{\vec{v}}(\vec{u}) = \left(\frac{\vec{u} \cdot \vec{v}}{||\vec{v}||^2}\right) \vec{v}.$$

Proof.

Let $\vec{p} = \operatorname{proj}_{\vec{v}}(\vec{u})$; then \vec{p} is parallel to \vec{v} , so $\vec{p} = t\vec{v}$ for some $t \in \mathbb{R}$, and $\vec{u} - \vec{p} = \vec{u} - t\vec{v}$ is orthogonal to \vec{v} , so

$$\begin{array}{rcl} (\vec{u}-t\vec{v})\cdot\vec{v} & = & 0 \\ \vec{u}\cdot\vec{v}-t\vec{v}\cdot\vec{v} & = & 0 \\ \vec{u}\cdot\vec{v} & = & t||\vec{v}||^2 \end{array}$$

Since $\vec{v} \neq \vec{0}$,

$$t = \frac{\vec{u} \cdot \vec{v}}{||\vec{v}||^2}.$$

Therefore,

$$\vec{\mathrm{p}} = \mathrm{t}\vec{\mathrm{v}} = \left(\frac{\vec{\mathrm{u}}\cdot\vec{\mathrm{v}}}{||\vec{\mathrm{v}}||^2}\right)\vec{\mathrm{v}}.$$

Remark

Note that

- ▶ $\{\vec{v}\}$ is an orthogonal basis of the subspace U of \mathbb{R}^3 consisting of the line through the origin parallel to \vec{v} .
- $\blacktriangleright \vec{u} \vec{p} \in U^{\perp} \text{ (since } (\vec{u} \vec{p}) \cdot \vec{v} = 0).$

Example (Generalizing to \mathbb{R}^n)

Suppose U is a subspace of \mathbb{R}^n , $\vec{x} \in \mathbb{R}^n$, and that $\{\vec{f}_1, \vec{f}_2, \dots, \vec{f}_m\}$ and $\{\vec{g}_1, \vec{g}_2, \dots, \vec{g}_m\}$ are orthogonal bases of U. Define

$$\begin{split} \vec{p}_f &= \left(\frac{\vec{x} \cdot \vec{f}_1}{||\vec{f}_1||^2}\right) \vec{f}_1 + \left(\frac{\vec{x} \cdot \vec{f}_2}{||\vec{f}_2||^2}\right) \vec{f}_2 + \dots + \left(\frac{\vec{x} \cdot \vec{f}_m}{||\vec{f}_m||^2}\right) \vec{f}_m \ \ \text{and} \\ \vec{p}_g &= \left(\frac{\vec{x} \cdot \vec{g}_1}{||\vec{g}_1||^2}\right) \vec{g}_1 + \left(\frac{\vec{x} \cdot \vec{g}_2}{||\vec{g}_2||^2}\right) \vec{g}_2 + \dots + \left(\frac{\vec{x} \cdot \vec{g}_m}{||\vec{g}_m||^2}\right) \vec{g}_m. \end{split}$$

Then $\vec{p}_f, \vec{p}_g \in U$ (since they are linear combinations of vectors of U) and $\vec{x} - \vec{p}_f, \vec{x} - \vec{p}_g \in U^{\perp}$ (by the Orthogonal Lemma). This implies that $\vec{p}_f - \vec{p}_\sigma \in U$, and $(\vec{x} - \vec{p}_\sigma) - (\vec{x} - \vec{p}_f) \in U^{\perp}$. However,

$$(\vec{x} - \vec{p}_g) - (\vec{x} - \vec{p}_f) = \vec{p}_f - \vec{p}_g,$$

and thus $\vec{p}_f - \vec{p}_g$ is in both U and U^{\perp}. This is possible if and only if $\vec{p}_f - \vec{p}_g = \vec{0}$, i.e., $\vec{p}_f = \vec{p}_g$. This means that the computation of \vec{p}_f and \vec{p}_g does not depend on which orthogonal basis is used.

Definition

Let $\{\vec{f}_1, \vec{f}_2, \dots, \vec{f}_m\}$ be an orthogonal basis for a subspace U of \mathbb{R}^n , and let $\vec{x} \in \mathbb{R}^n$. The projection of \vec{x} on U is defined as

$$\operatorname{proj}_{U}(\vec{x}) = \left(\frac{\vec{x} \cdot \vec{f}_{1}}{||\vec{f}_{1}||^{2}}\right) \vec{f}_{1} + \left(\frac{\vec{x} \cdot \vec{f}_{2}}{||\vec{f}_{2}||^{2}}\right) \vec{f}_{2} + \dots + \left(\frac{\vec{x} \cdot \vec{f}_{m}}{||\vec{f}_{m}||^{2}}\right) \vec{f}_{m}.$$

Remark

- 1. if $U = {\vec{0}}$, then $\text{proj}_{{\vec{0}}}(\vec{x}) = \vec{0}$ for any $\vec{x} \in \mathbb{R}^n$;
- 2. if $\vec{x} \in U$, then $\text{proj}_U(\vec{x})$ is also called the Fourier Expansion of \vec{x} .
- 3. In Orthogonal Lemma

$$\begin{split} \vec{f}_{m+1} &= \vec{x} - \underbrace{\left(\frac{\vec{x} \cdot \vec{f}_1}{||\vec{f}_1||^2} \vec{f}_1 + \frac{\vec{x} \cdot \vec{f}_2}{||\vec{f}_2||^2} \vec{f}_2 - \dots + \frac{\vec{x} \cdot \vec{f}_m}{||\vec{f}_m||^2} \vec{f}_m\right)}_{= \ proj_U(\vec{x})}. \end{split}$$

Orthogonal Bases

The Orthogonal Complement U

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

The Projection Theorem and its Implications

Theorem (Projection Theorem)

Let U be a subspace of \mathbb{R}^n , $\vec{x} \in \mathbb{R}^n$, and $\vec{p} = \text{proj}_U(\vec{x})$. Then

- 1. $\vec{p} \in U$ and $\vec{x} \vec{p} \in U^{\perp}$;
- 2. \vec{p} is the vector in U closest to \vec{x} , meaning that for any $\vec{y} \in U, \, \vec{y} \neq \vec{p}$,

$$||\vec{x} - \vec{p}|| < ||\vec{x} - \vec{y}||.$$

Proof.

- 1. By definition, $\vec{p} \in U$, and by the Orthogonal Lemma, $\vec{x} \vec{p} \in U^{\perp}$.
- 2. Let $\vec{y} \in U$, $\vec{y} \neq \vec{p}$. By the properties of vector addition/subtraction

$$\vec{x} - \vec{y} = (\vec{x} - \vec{p}) + (\vec{p} - \vec{y}).$$

Since $\vec{x} - \vec{p} \in U^{\perp}$ and $\vec{p} - \vec{y} \in U$,

$$(\vec{x} - \vec{p}) \cdot (\vec{p} - \vec{y}) = 0.$$

Hence, by Pythagoras' Theorem,

$$||\vec{x} - \vec{y}||^2 = ||\vec{x} - \vec{p}||^2 + ||\vec{p} - \vec{y}||^2.$$

Since $\vec{y} \neq \vec{p}$, $||\vec{p} - \vec{y}|| > 0$, so

$$||\vec{x} - \vec{y}||^2 > ||\vec{x} - \vec{p}||^2$$
.

Taking square roots (since $||\vec{x} - \vec{y}||$ and $||\vec{x} - \vec{p}||$ are nonnegative),

$$||\vec{x} - \vec{y}|| > ||\vec{x} - \vec{p}||.$$

Example

Let

$$ec{\mathbf{x}}_1 = \left[egin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array}
ight], ec{\mathbf{x}}_2 = \left[egin{array}{c} 1 \\ 0 \\ 1 \\ 1 \end{array}
ight], ec{\mathbf{x}}_3 = \left[egin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array}
ight], \quad ext{and} \quad ec{\mathbf{v}} = \left[egin{array}{c} 4 \\ 3 \\ -2 \\ 5 \end{array}
ight]$$

We want to find the vector in $U = \text{span}\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ closest to \vec{v} .

In a previous example, we used the Gram-Schmidt Orthogonalization Algorithm to construct the orthogonal basis, B, of U:

$$\mathbf{B} = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix} \right\}.$$

 $\operatorname{proj}_{\mathbf{U}}(\vec{\mathbf{v}}) = \frac{2}{2} \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} + \frac{5}{1} \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} + \frac{12}{6} \begin{bmatrix} 1\\2\\-1\\0\\5 \end{bmatrix} = \begin{bmatrix} 3\\4\\-1\\5 \end{bmatrix}$

By the Projection Theorem,

is the vector in U closest to $\vec{\mathbf{v}}$.

Example (continued)

Problem

Let

$$ec{\mathbf{x}}_1 = \left[egin{array}{c} 1 \ 0 \ 1 \ 0 \end{array}
ight], \ ec{\mathbf{x}}_2 = \left[egin{array}{c} 1 \ 1 \ 1 \ 0 \end{array}
ight], \quad ext{and} \quad ec{\mathbf{x}}_3 = \left[egin{array}{c} 1 \ 1 \ 0 \ 0 \end{array}
ight]$$

and let $U = \text{span}\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$. Find an orthogonal basis of U, and find the vector in U closest to

$$\vec{\mathbf{v}} = \begin{bmatrix} 2 \\ 0 \\ -1 \\ 3 \end{bmatrix}$$

Solution (Outline)

First use the Gram-Schmidt Orthogonalization Algorithm to construct an orthogonal basis of of U, and then find the projection of \vec{v} on U.

Gram-Schmidt orthogonalization with

$$\begin{array}{rcl} f_1 & = & \vec{x}_1\,, \\ \\ \vec{f}_2 & = & \vec{x}_2 - \frac{\vec{x}_2 \cdot \vec{f}_1}{||\vec{f}_1||^2} \vec{f}_1\,, \\ \\ \vec{f}_3 & = & \vec{x}_3 - \frac{\vec{x}_3 \cdot \vec{f}_1}{||\vec{f}_1||^2} \vec{f}_1 - \frac{\vec{x}_3 \cdot \vec{f}_2}{||\vec{f}_2||^2} \vec{f}_2 \end{array}$$

yields an orthogonal basis

$$\mathbf{B} = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix} \right\}.$$

Thus the vector in U closest of $\vec{\mathbf{v}}$ is

$$\operatorname{proj}_{\mathbf{U}}(\vec{\mathbf{v}}) = \frac{1}{2} \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix} = \begin{bmatrix} 2\\0\\-1\\0 \end{bmatrix}.$$

Problem

Find the point q in the plane 3x + y - 2z = 0 that is closest to the point $p_0 = (1, 1, 1)$.

Solution

Recall that any plane in \mathbb{R}^3 that contains the origin is a subspace of \mathbb{R}^3 .

- 1. Find a basis X of the subspace U of \mathbb{R}^3 defined by the equation 3x + y 2z = 0.
- 2. Orthogonalize the basis X to get an orthogonal basis B of U.
- 3. Find the projection on U of the position vector of the point p_0 .

1. 3x + y - 2z = 0 is a system of one equation in three variables. Putting the augmented matrix in reduced row-echelon form

gives general solution $x = \frac{1}{3}s + \frac{2}{3}t$, y = s, z = t for any $s, t \in \mathbb{R}$. Then

$$U = \operatorname{span} \left\{ \begin{bmatrix} -\frac{1}{3} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{2}{3} \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Let

$$X = \left\{ \begin{bmatrix} -1\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\3 \end{bmatrix} \right\}$$

Then X is linearly independent and span(X) = U, so X is a basis of U.

 Use the Gram-Schmidt Orthogonalization Algorithm to get an orthogonal basis of U:

$$\vec{f}_1 = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix} \quad \text{and} \quad \vec{f}_2 = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} - \frac{-2}{10} \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 9 \\ 3 \\ 15 \end{bmatrix}.$$

Therefore,

$$\mathbf{B} = \left\{ \begin{bmatrix} -1\\3\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\5 \end{bmatrix} \right\}$$

is an orthogonal basis of U.

3. To find the point q on U closest to $p_0 = (1, 1, 1)$, compute

$$\operatorname{proj}_{\mathbf{U}} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \frac{2}{10} \begin{bmatrix} -1\\3\\0 \end{bmatrix} + \frac{9}{35} \begin{bmatrix} 3\\1\\5 \end{bmatrix}$$
$$= \frac{1}{7} \begin{bmatrix} 4\\6\\0 \end{bmatrix}.$$

Therefore, $q = \left(\frac{4}{7}, \frac{6}{7}, \frac{9}{7}\right)$.

Orthogonal Bases

The Orthogonal Complement U-

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

Projection as a Linear Transformation

Definition

Let V and W be vector spaces, and $T: V \to W$ a linear transformation.

1. The kernel of T (sometimes called the null space of T) is defined to be the set

$$\ker(\mathbf{T}) = \{ \vec{\mathbf{v}} \in \mathbf{V} \mid \mathbf{T}(\vec{\mathbf{v}}) = \vec{\mathbf{0}} \}.$$

2. The image of T is defined to be the set

$$\operatorname{im}(T) = \{ T(\vec{v}) \mid \vec{v} \in V \}.$$

Theorem

Let U be a fixed subspace of \mathbb{R}^n , and define $T: \mathbb{R}^n \to \mathbb{R}^n$ by

$$T(\vec{x}) = proj_U(\vec{x}) \text{ for all } \vec{x} \in \mathbb{R}^n.$$

Then

- 1. T is a linear operator on \mathbb{R}^n ;
- 2. $\operatorname{im}(T) = U$ and $\operatorname{ker}(T) = U^{\perp}$;
- 3. $\dim(U) + \dim(U^{\perp}) = n$.

Proof.

If $U = \{\vec{0}\}$, then $U^{\perp} = \mathbb{R}^n$, so $T(\vec{x}) = \vec{0}$ for all $\vec{x} \in \mathbb{R}^n$. This implies that T = 0 (the zero transformation), and the theorem holds.

Now suppose that $U \neq \{\vec{0}\}$. We first prove (3) based on (1) and (2):

3. Since T is a linear transformation – part (1), the Rank-Nullity Theorem implies that

$$\dim(\operatorname{im}(T)) + \dim(\ker(T)) = \dim \mathbb{R}^{n} = n.$$

Applying the result from part (2), we get

$$\dim(U) + \dim(U^{\perp}) = n.$$

1. Let $B=\{\vec{f}_1,\vec{f}_2,\ldots,\vec{f}_m\}$ be an orthonormal basis of U. Then by the definition of $proj_U(\vec{x}),$

$$T(\vec{x}) = (\vec{x} \cdot \vec{f}_1)\vec{f}_1 + (\vec{x} \cdot \vec{f}_2)\vec{f}_2 + \dots + (\vec{x} \cdot \vec{f}_m)\vec{f}_m, \tag{1}$$

(since $\|\vec{f}_i\|^2 = 1$ for each i = 1, 2, ..., m). Let $\vec{x}, \vec{y} \in U$ and $k \in \mathbb{R}$. Then

$$\begin{split} T(\vec{x} + \vec{y}) &= ((\vec{x} + \vec{y}) \cdot \vec{f}_1) \vec{f}_1 + ((\vec{x} + \vec{y}) \cdot \vec{f}_2) \vec{f}_2 + \dots + ((\vec{x} + \vec{y}) \cdot \vec{f}_m) \vec{f}_m \\ &= (\vec{x} \cdot \vec{f}_1 + \vec{y} \cdot \vec{f}_1) \vec{f}_1 + (\vec{x} \cdot \vec{f}_2 + \vec{y} \cdot \vec{f}_2) \vec{f}_2 + \\ & \cdots + (\vec{x} \cdot \vec{f}_m + \vec{y} \cdot \vec{f}_m) \vec{f}_m \\ &= (\vec{x} \cdot \vec{f}_1) \vec{f}_1 + (\vec{y} \cdot \vec{f}_1) \vec{f}_1 + (\vec{x} \cdot \vec{f}_2) \vec{f}_2 + (\vec{y} \cdot \vec{f}_2) \vec{f}_2 + \\ & \cdots + (\vec{x} \cdot \vec{f}_m) \vec{f}_m + (\vec{y} \cdot \vec{f}_m) \vec{f}_m \\ &= [(\vec{x} \cdot \vec{f}_1) \vec{f}_1 + (\vec{x} \cdot \vec{f}_2) \vec{f}_2 + \dots + (\vec{x} \cdot \vec{f}_m) \vec{f}_m] \\ &+ [(\vec{y} \cdot \vec{f}_1) \vec{f}_1 + (\vec{y} \cdot \vec{f}_2) \vec{f}_2 + \dots + (\vec{y} \cdot \vec{f}_m) \vec{f}_m] \\ &= T(\vec{x}) + T(\vec{y}). \end{split}$$

Thus $\vec{x} + \vec{y} \in U$, so T preserves addition.

1. (continued) Also,

$$\begin{split} T(k\vec{x}) &= ((k\vec{x}) \cdot \vec{f}_1) \vec{f}_1 + ((k\vec{x}) \cdot \vec{f}_2) \vec{f}_2 + \dots + ((k\vec{x}) \cdot \vec{f}_m) \vec{f}_m \\ &= (k(\vec{x} \cdot \vec{f}_1)) \vec{f}_1 + (k(\vec{x} \cdot \vec{f}_2)) \vec{f}_2 + \dots + (k(\vec{x} \cdot \vec{f}_m)) \vec{f}_m \\ &= k(\vec{x} \cdot \vec{f}_1) \vec{f}_1 + k(\vec{x} \cdot \vec{f}_2) \vec{f}_2 + \dots + k(\vec{x} \cdot \vec{f}_m) \vec{f}_m \\ &= k[(\vec{x} \cdot \vec{f}_1) \vec{f}_1 + (\vec{x} \cdot \vec{f}_2) \vec{f}_2 + \dots + (\vec{x} \cdot \vec{f}_m) \vec{f}_m] \end{split}$$

Thus $k\vec{x} \in U$, so T preserves scalar multiplication.

Therefore, T is a linear transformation.

 $= kT(\vec{x}).$

2. By equation (1), T(x) ∈ U because T(x) is a linear combination of the elements of B ⊆ U, and therefore im(T) ⊆ U. Conversely, suppose that x ∈ U. By using Fourier Expansion, x = T(x), and thus x ∈ im(T). Therefore U ⊆ im(T). Since im(T) ⊆ U and U ⊆ im(T), im(T) = U.

To show that $\ker(T) = U^{\perp}$, let $\vec{x} \in U^{\perp}$. Then $\vec{x} \cdot \vec{f_i} = 0$ for each $i = 1, 2, \ldots, m$, so $T(\vec{x}) = \vec{0}$, implying $\vec{x} \in \ker(T)$. Thus $U^{\perp} \subseteq \ker(T)$. Conversely, let $\vec{x} \in \ker(T)$. Then $T(\vec{x}) = \vec{0}$, so $\vec{x} - T(\vec{x}) = \vec{x}$; but,

Conversely, let $x \in \ker(T)$. Then T(x) = 0, so x - T(x) = x; but, $\vec{x} - T(\vec{x}) \in U^{\perp}$ (Projection Theorem), so $\vec{x} \in U^{\perp}$, implying that $\ker(T) \subseteq U^{\perp}$. Since $U^{\perp} \subseteq \ker(T)$ and $\ker(T) \subseteq U^{\perp}$, $\ker(T) = U^{\perp}$.