Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality
 §8-1. Orthogonal Complements and Projections

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $01 / 25 / 2021$)

Orthogonal Bases

The Orthogonal Complement U^{\perp}

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

Orthogonal Bases

The Orthogonal Complement U^{\perp}

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

Orthogonality Basis

Definition (Orthogonality)

- Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$. We say the \vec{x} and \vec{y} are orthogonal if $\vec{x} \cdot \vec{y}=0$.
- More generally, $\mathrm{X}=\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ is an orthogonal set if each $\overrightarrow{\mathrm{x}}_{\mathrm{i}}$ is nonzero, and every pair of distinct vectors of X is orthogonal, i.e., $\overrightarrow{\mathrm{x}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{j}}=0$ for all $\mathrm{i} \neq \mathrm{j}, 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{k}$.
- A set $\mathrm{X}=\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{k}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ is an orthonormal set if X is an orthogonal set of unit vectors, i.e., $\left\|\overrightarrow{\mathrm{x}}_{\mathrm{i}}\right\|=1$ for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{k}$.

ก

Definition (Linearly Independence)

Let V be a vector space and $S=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}\right\}$ a subset of V. The set S is linearly independent if the following condition holds:

$$
\mathrm{s}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{s}_{2} \overrightarrow{\mathrm{x}}_{2}+\cdots+\mathrm{s}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\overrightarrow{0} \quad \Rightarrow \quad \mathrm{~s}_{1}=\mathrm{s}_{2}=\cdots=\mathrm{s}_{\mathrm{k}}=0 .
$$

Lemma (Independent Lemma)
Let V be a vector space and $\mathrm{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{k}}\right\}$ an independent subset of V. If \mathbf{u} is a vector in V, but $\mathbf{u} \notin \operatorname{span}(S)$, then $S^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{k}}, \mathbf{u}\right\}$ is independent.
— v.S. -

Lemma (Orthogonal Lemma)

Suppose $\left\{\vec{f}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$ is an orthogonal subset of \mathbb{R}^{n}, and suppose $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$. Define

$$
\overrightarrow{\mathrm{f}}_{\mathrm{m}+1}=\overrightarrow{\mathrm{x}}-\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}} \overrightarrow{\mathrm{f}}_{1}-\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}}-\cdots-\frac{\overrightarrow{\mathrm{x}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{m}} \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\|_{\mathrm{f}}} .
$$

Then

1. $\overrightarrow{\mathrm{f}}_{\mathrm{m}+\mathrm{1}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{j}}=0$ for all $\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{m}$.
2. If $\overrightarrow{\mathrm{x}} \notin \operatorname{span}\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$, then $\overrightarrow{\mathrm{f}}_{\mathrm{m}+1} \neq \overrightarrow{0}$, and $\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}, \overrightarrow{\mathrm{f}}_{\mathrm{m}+1}\right\}$ is an orthogonal set.

Proof. (of orthogonal lemma)
(1) For any $1 \leq \mathrm{k} \leq \mathrm{m}$

$$
\begin{aligned}
& \vec{f}_{\mathrm{m}+1} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}}=\left(\overrightarrow{\mathrm{x}}-\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}} \overrightarrow{\mathrm{f}}_{1}-\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}} \overrightarrow{\mathrm{f}}_{2}-\cdots-\frac{\overrightarrow{\mathrm{x}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\|^{2}} \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}} \\
& =\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}}-\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}} \overrightarrow{\mathrm{f}}_{1} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}}-\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}} \cdot \overrightarrow{\mathrm{f}}_{2} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}}-\cdots-\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\|^{2}} \overrightarrow{\mathrm{f}}_{\mathrm{m}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}} \\
& =\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}}-\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{k}}\right\|^{2}} \overrightarrow{\mathrm{f}}_{\mathrm{k}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}} \\
& =\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}}-\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}}=0 .
\end{aligned}
$$

Proof. (continued)
(2) Since $\left\{\vec{f}_{1}, \cdots, \vec{f}_{m}\right\}$ are independent, by the unique representation theorem, $\overrightarrow{\mathrm{x}} \in \operatorname{span}\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$, iff there exists unique representation for $\overrightarrow{\mathrm{x}}$

$$
\overrightarrow{\mathrm{x}}=\mathrm{a}_{1} \overrightarrow{\mathrm{f}}_{\mathrm{i}}+\cdots+\mathrm{a}_{\mathrm{m}} \overrightarrow{\mathrm{f}}_{\mathrm{m}} .
$$

Using the fact that $\left\{\vec{f}_{1}, \cdots, \vec{f}_{m}\right\}$ is orthogonal, one finds that

$$
a_{i}=\frac{\vec{x} \cdot \vec{f}_{i}}{\left\|\vec{f}_{i}\right\|^{2}} .
$$

In other words,
$\overrightarrow{\mathrm{x}} \in \operatorname{span}\left\{\overrightarrow{\mathrm{f}}_{1}, \cdots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\} \quad \Longleftrightarrow \quad \overrightarrow{\mathrm{f}}_{\mathrm{m}+1}=\overrightarrow{\mathrm{x}}-\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}} \overrightarrow{\mathrm{f}}_{1}-\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}} \overrightarrow{\mathrm{f}}_{2}-\cdots-\frac{\overrightarrow{\mathrm{x}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\|^{2}} \overrightarrow{\mathrm{f}}_{\mathrm{m}}=\overrightarrow{0}$.
Now, $\overrightarrow{\mathrm{x}} \notin \operatorname{span}\left\{\overrightarrow{\mathrm{f}}_{1}, \cdots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$ implies that $\overrightarrow{\mathrm{f}}_{\mathrm{m}+1} \neq \overrightarrow{0}$.
Finally, $\left\{\vec{f}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}, \overrightarrow{\mathrm{f}}_{\mathrm{m}+1}\right\}$ is orthogonal thanks to (1).

Theorem

Let U be a subspace of \mathbb{R}^{n}.

1. Every orthogonal subset $\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$ of U is a subset of an orthogonal basis of U.
2. U has an orthogonal basis.

Proof.

```
Algorithm 1: Proof of part (1) of Theorem
Input : An orthogonal set \(\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\} \subseteq \mathrm{U} \subseteq \mathbb{R}^{\mathrm{n}}\)
\(\mathrm{m} \rightarrow \mathrm{n}\);
while \(\operatorname{span}\left\{\overrightarrow{\mathrm{f}}_{1}, \cdots, \overrightarrow{\mathrm{f}}_{\mathrm{n}}\right\} \neq \mathrm{U}\) do
    Pick up arbitrary \(\overrightarrow{\mathrm{x}} \in \mathrm{U} \backslash \operatorname{span}\left\{\overrightarrow{\mathrm{f}}_{1}, \cdots, \overrightarrow{\mathrm{f}}_{\mathrm{n}}\right\}\);
    Let \(\vec{f}_{n+1}\) be given by the Orthogonal Lemma;
    Then \(\left\{\overrightarrow{\mathrm{f}}_{1}, \cdots, \overrightarrow{\mathrm{f}}_{\mathrm{n}}, \overrightarrow{\mathrm{f}}_{\mathrm{n}+1}\right\}\) is an orthogonal set;
    \(\mathrm{n}+1 \rightarrow \mathrm{n}\);
end
Output: An orthogonal basis \(\left\{\vec{f}_{1}, \cdots, \vec{f}_{n}\right\}\) of \(U\)
```

(2) If $\mathrm{U}=\{\overrightarrow{0}\}$, done. Otherwise, find an arbitrary nonzero vector in u and run the algorithm in (1).

Theorem (Gram-Schmidt Orthogonalization Algorithm)
Let U be a subset of \mathbb{R}^{n} and let $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\}$ be a basis of U . Let $\overrightarrow{\mathrm{f}}_{1}=\overrightarrow{\mathrm{x}}_{1}$, and for each $\mathrm{j}, 2 \leq \mathrm{j} \leq \mathrm{m}$, let

$$
\overrightarrow{\mathrm{f}}_{\mathrm{j}}=\overrightarrow{\mathrm{x}}_{\mathrm{j}}-\frac{\overrightarrow{\mathrm{x}}_{j} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}}-\frac{\overrightarrow{\mathrm{x}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}}-\cdots-\frac{\overrightarrow{\mathrm{x}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{j}-1}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{j}}-1\right\|^{2}} \overrightarrow{\mathrm{f}}_{\mathrm{j}-1} .
$$

Then $\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$ is an orthogonal basis of U , and

$$
\operatorname{span}\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{j}}\right\}=\operatorname{span}\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{j}}\right\} \quad \forall \mathrm{j}=1, \cdots, \mathrm{~m} .
$$

```
Algorithm 2: Gram-Schmidt Orthogonalization Algorithm
Input : A basis \(\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{m}}\right\} \subseteq \mathrm{U} \subseteq \mathbb{R}^{\mathrm{n}}\)
\(\overrightarrow{\mathrm{f}}_{1} \leftarrow \overrightarrow{\mathrm{x}}_{1}\);
for \(\mathrm{j} \leftarrow 2\) to m do
    \(\overrightarrow{\mathrm{f}}_{\mathrm{j}} \leftarrow \overrightarrow{\mathrm{x}}_{\mathrm{j}}-\frac{\overrightarrow{\mathrm{x}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}} \overrightarrow{\mathrm{f}}_{1}-\frac{\overrightarrow{\mathrm{x}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}} \overrightarrow{\mathrm{f}}_{2}-\cdots-\frac{\overrightarrow{\mathrm{x}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{j}-1}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{j}-1}\right\|^{2}} \overrightarrow{\mathrm{f}}_{\mathrm{j}-1}\).
end
Output: An orthogonal basis \(\left\{\overrightarrow{\mathrm{f}}_{1}, \cdots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}\) of U s.t.
\(\operatorname{span}\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{j}}\right\}=\operatorname{span}\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{j}}\right\}\)
for all \(\mathrm{j}=1, \cdots, \mathrm{~m}\).
```

$$
\begin{array}{cc}
\operatorname{span}\left\{\overrightarrow{\mathrm{a}}_{1}, \vec{a}_{2}, \overrightarrow{\mathrm{a}}_{3}\right\} & =\operatorname{span}\left\{\overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}, \overrightarrow{\mathrm{~b}}_{3}\right\} \\
\text { basis } & \rightarrow \text { orthogonal basis }
\end{array}
$$

Problem

Let

$$
\overrightarrow{\mathrm{x}}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad \overrightarrow{\mathrm{x}}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \quad \text { and } \quad \overrightarrow{\mathrm{x}}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

and let $\mathrm{U}=\operatorname{span}\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \overrightarrow{\mathrm{x}}_{3}\right\}$. We use the Gram-Schmidt Orthogonalization Algorithm to construct an orthogonal basis B of U.

Proof.
First $\vec{f}_{1}=\vec{x}_{1}$. Next,

$$
\overrightarrow{\mathrm{f}}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Finally,

$$
\overrightarrow{\mathrm{f}}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{0}{1}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
1 \\
-1 / 2 \\
0
\end{array}\right]
$$

Proof. (continued)

Therefore,

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 / 2 \\
1 \\
-1 / 2 \\
0
\end{array}\right]\right\}
$$

is an orthogonal basis of U . However, it is sometimes more convenient to deal with vectors having integer entries, in which case we take

$$
\mathrm{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
2 \\
-1 \\
0
\end{array}\right]\right\} .
$$

(Orthogonality of the set is not affected by multiplying vectors in the set by nonzero scalars.)

Orthogonal Bases

The Orthogonal Complement U^{\perp}

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

The Orthogonal Complement U^{\perp}

Definition

Let U be a subspace of \mathbb{R}^{n}. The orthogonal complement of U , called U perp, is denoted U^{\perp} and is defined as

$$
\mathrm{U}^{\perp}=\left\{\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}} \mid \overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}}=0 \text { for all } \overrightarrow{\mathrm{y}} \in \mathrm{U}\right\} .
$$

Example

$$
\begin{aligned}
\text { Let } \mathrm{U}=\operatorname{span}\{ & {\left.\left[\begin{array}{r}
-2 \\
3 \\
1
\end{array}\right],\left[\begin{array}{r}
5 \\
-1 \\
2
\end{array}\right]\right\}, \text { and suppose } \overrightarrow{\mathrm{v}}=\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right] \in \mathrm{U}^{\perp} . \text { Then } } \\
& -2 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}=0 \text { and } 5 \mathrm{a}-\mathrm{b}+2 \mathrm{c}=0 .
\end{aligned}
$$

This system of two equations in three variables has solution

$$
\overrightarrow{\mathrm{v}}=\left[\begin{array}{c}
-7 \\
-9 \\
13
\end{array}\right] \mathrm{t}, \quad \forall \mathrm{t} \in \mathbb{R},
$$

which is noting but a line passing through origin and perpendicular with the plane U .

Theorem (Properties of the Orthogonal Complement)

Let U be a subspace of \mathbb{R}^{n}.

1. U^{\perp} is a subspace of \mathbb{R}^{n}.
2. $\{\overrightarrow{0}\}^{\perp}=\mathbb{R}^{\mathrm{n}}$ and $\left(\mathbb{R}^{\mathrm{n}}\right)^{\perp}=\{\overrightarrow{0}\}$.
3. If $U=\operatorname{span}\left\{\overrightarrow{\mathrm{y}}_{1}, \overrightarrow{\mathrm{y}}_{2}, \ldots, \overrightarrow{\mathrm{y}}_{\mathrm{m}}\right\}$, then

$$
\mathrm{U}^{\perp}=\left\{\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}} \mid \overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}}_{\mathrm{j}}=0 \text { for } \mathrm{j}=1,2, \ldots, \mathrm{~m}\right\}
$$

Proof.

1. This is a standard subspace proof and is left as an exercise.
2. Here, $\overrightarrow{0}$ is the zero vector of \mathbb{R}^{n}. Since $\vec{x} \cdot \overrightarrow{0}=0$ for all $\vec{x} \in \mathbb{R}^{n}$, $\mathbb{R}^{\mathrm{n}} \subseteq\{\overrightarrow{0}\}^{\perp}$. Since $\{\overrightarrow{0}\}^{\perp} \subseteq \mathbb{R}^{\mathrm{n}}$, the equality follows, i.e., $\{\overrightarrow{0}\}^{\perp}=\mathbb{R}^{\mathrm{n}}$.

Again, since $\vec{x} \cdot \overrightarrow{0}=0$ for all $\vec{x} \in \mathbb{R}^{n}, \overrightarrow{0} \in\left(\mathbb{R}^{n}\right)^{\perp}$, so $\{\overrightarrow{0}\} \subseteq\left(\mathbb{R}^{n}\right)^{\perp}$. Suppose $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}, \overrightarrow{\mathrm{x}} \neq \overrightarrow{0}$. Since $\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{x}}=\|\overrightarrow{\mathrm{x}}\|^{2}$ and $\overrightarrow{\mathrm{x}} \neq \overrightarrow{0}, \overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{x}} \neq 0$, so $\overrightarrow{\mathrm{x}} \notin\left(\mathbb{R}^{\mathrm{n}}\right)^{\perp}$. Therefore, $\{\overrightarrow{0}\}^{\mathrm{c}} \subseteq\left(\left(\mathbb{R}^{\mathrm{n}}\right)^{\perp}\right)^{\mathrm{c}}$, or equivalently, $\left(\mathbb{R}^{\mathrm{n}}\right)^{\perp} \subseteq\{\overrightarrow{0}\}$. Thus $\left(\mathbb{R}^{\mathrm{n}}\right)^{\perp}=\{\overrightarrow{0}\}$.

Proof. (continued)

3. Let $\mathrm{X}=\left\{\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}} \mid \overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}}_{\mathrm{j}}=0\right.$ for $\left.\mathrm{j}=1,2, \ldots, \mathrm{~m}\right\}$.
" $\mathrm{U}^{\perp} \subseteq \mathrm{X}$ ": Suppose that $\overrightarrow{\mathrm{v}} \in \mathrm{U}^{\perp}$. Then $\overrightarrow{\mathrm{v}}$ is orthogonal to every vector in U; in particular, $\overrightarrow{\mathrm{v}} \cdot \vec{y}_{j}=0$ for $\mathrm{j}=1,2, \ldots, \mathrm{~m}$ since each such \vec{y}_{j} is in U . Therefore, $\overrightarrow{\mathrm{v}} \in \mathrm{X}$. This proves that $\mathrm{U}^{\perp} \subseteq \mathrm{X}$.
"X $\subseteq \mathrm{U}^{\perp}$ ": Now suppose that $\overrightarrow{\mathrm{v}} \in \mathrm{X}$ and $\overrightarrow{\mathrm{u}} \in \mathrm{U}$. Then $\overrightarrow{\mathrm{u}}=\mathrm{a}_{1} \overrightarrow{\mathrm{y}}_{1}+\mathrm{a}_{2} \overrightarrow{\mathrm{y}}_{2}+\cdots+\mathrm{a}_{\mathrm{m}} \overrightarrow{\mathrm{y}}_{\mathrm{m}}$ for some $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{m}} \in \mathbb{R}$, and so

$$
\begin{aligned}
\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{u}} & =\overrightarrow{\mathrm{v}} \cdot\left(\mathrm{a}_{1} \vec{y}_{1}+\mathrm{a}_{2} \vec{y}_{2}+\cdots+\mathrm{a}_{\mathrm{m}} \overrightarrow{\mathrm{y}}_{\mathrm{m}}\right) \\
& =\overrightarrow{\mathrm{v}} \cdot\left(\mathrm{a}_{1} \vec{y}_{1}\right)+\overrightarrow{\mathrm{v}} \cdot\left(\mathrm{a}_{2} \vec{y}_{2}\right)+\cdots+\left(\mathrm{a}_{\mathrm{m}} \vec{y}_{\mathrm{m}}\right) \\
& =\mathrm{a}_{1}\left(\overrightarrow{\mathrm{v}} \cdot \vec{y}_{1}\right)+\mathrm{a}_{2}\left(\overrightarrow{\mathrm{v}} \cdot \vec{y}_{2}\right)+\cdots+\mathrm{a}_{\mathrm{m}}\left(\overrightarrow{\mathrm{v}} \cdot \vec{y}_{\mathrm{m}}\right) .
\end{aligned}
$$

Since $\vec{v} \in X, \vec{v} \cdot \vec{y}_{j}=0$ for all $j, 1 \leq j \leq m$. Therefore, $\vec{v} \cdot \vec{u}=0$, and thus $\mathrm{X} \subseteq \mathrm{U}^{\perp}$.

Finally, since $\mathrm{U}^{\perp} \subseteq \mathrm{X}$ and $\mathrm{X} \subseteq \mathrm{U}^{\perp}$, we see that $\mathrm{U}^{\perp}=\mathrm{X}$.

Problem
Let

$$
\mathrm{U}=\operatorname{span}\left\{\left[\begin{array}{r}
0 \\
-1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0 \\
4
\end{array}\right]\right\} .
$$

Find U^{\perp} by finding a basis of U^{\perp}.
Solution
$\mathrm{U}^{\perp}=\left\{\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d}\end{array}\right] \in \mathbb{R}^{4} \left\lvert\,\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d}\end{array}\right] \cdot\left[\begin{array}{r}0 \\ -1 \\ 3 \\ 2\end{array}\right]=0 \quad\right.\right.$ and $\left.\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d}\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 4\end{array}\right]=0\right\}$.
This leads to the system of two equation in four variables

$$
\begin{aligned}
-\mathrm{b}+3 \mathrm{c}+2 \mathrm{~d} & =0 \\
2 \mathrm{a}+\mathrm{b}+4 \mathrm{~d} & =0
\end{aligned}
$$

Solution (continued)

$$
A=\left[\begin{array}{rrrr|r}
0 & -1 & 3 & 2 & 0 \\
2 & 1 & 0 & 4 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 3 / 2 & 3 & 0 \\
0 & 1 & -3 & -2 & 0
\end{array}\right]
$$

Therefore,

$$
\mathrm{U}^{\perp}=\left\{\left.\left[\begin{array}{c}
-\frac{3}{2} \mathrm{~s}-3 \mathrm{t} \\
3 \mathrm{~s}+2 \mathrm{t} \\
\mathrm{~s} \\
\mathrm{t}
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, \mathrm{s}, \mathrm{t} \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{r}
-\frac{3}{2} \\
3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
0 \\
1
\end{array}\right]\right\} .
$$

Since the set $\mathrm{B}=\left\{\left[\begin{array}{r}-\frac{3}{2} \\ 3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 0 \\ 1\end{array}\right]\right\}$ is independent and spans $\mathrm{U}^{\perp}, \mathrm{B}$ is a basis of U^{\perp}.

Remark

Notice that $\mathrm{U}^{\perp}=\operatorname{null}(\mathrm{A})$, where A is the matrix whose rows are a spanning subset of U .

Orthogonal Bases
 The Orthogonal Complement U^{\perp}

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

Definition of Orthogonal Projection

Theorem (Projection Formula)
Suppose \vec{u} and \vec{v} are vectors in $\mathbb{R}^{3}, \vec{v} \neq \overrightarrow{0}$. Then the projection of \vec{u} on \vec{v}, denoted as $\operatorname{proj}_{\vec{v}}(\overrightarrow{\mathrm{u}})$, is equal to

$$
\operatorname{proj}_{\vec{v}}(\overrightarrow{\mathrm{u}})=\left(\frac{\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}}{\|\overrightarrow{\mathrm{v}}\|^{2}}\right) \overrightarrow{\mathrm{v}}
$$

Proof.

Let $\vec{p}=\operatorname{proj}_{\vec{v}}(\overrightarrow{\mathrm{u}})$; then \vec{p} is parallel to $\overrightarrow{\mathrm{v}}$, so $\overrightarrow{\mathrm{p}}=t \overrightarrow{\mathrm{v}}$ for some $t \in \mathbb{R}$, and $\vec{u}-\vec{p}=\vec{u}-t \vec{v}$ is orthogonal to \vec{v}, so

$$
\begin{aligned}
(\overrightarrow{\mathrm{u}}-\mathrm{t} \overrightarrow{\mathrm{v}}) \cdot \overrightarrow{\mathrm{v}} & =0 \\
\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}-\mathrm{t} \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{v}} & =0 \\
\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}} & =\mathrm{t}\|\overrightarrow{\mathrm{v}}\|^{2}
\end{aligned}
$$

Since $\vec{v} \neq \overrightarrow{0}$,

$$
\mathrm{t}=\frac{\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}}{\|\overrightarrow{\mathrm{v}}\|^{2}}
$$

Therefore,

$$
\overrightarrow{\mathrm{p}}=\mathrm{t} \overrightarrow{\mathrm{v}}=\left(\frac{\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}}{\|\overrightarrow{\mathrm{v}}\|^{2}}\right) \overrightarrow{\mathrm{v}} .
$$

Remark

Note that
$\nabla\{\vec{v}\}$ is an orthogonal basis of the subspace U of \mathbb{R}^{3} consisting of the line through the origin parallel to $\overrightarrow{\mathrm{v}}$.

- $\overrightarrow{\mathrm{u}}-\overrightarrow{\mathrm{p}} \in \mathrm{U}^{\perp}($ since $(\overrightarrow{\mathrm{u}}-\overrightarrow{\mathrm{p}}) \cdot \overrightarrow{\mathrm{v}}=0)$.

Example (Generalizing to \mathbb{R}^{n})

Suppose U is a subspace of $\mathbb{R}^{n}, \overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$, and that $\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$ and $\left\{\overrightarrow{\mathrm{g}}_{1}, \overrightarrow{\mathrm{~g}}_{2}, \ldots, \overrightarrow{\mathrm{~g}}_{\mathrm{m}}\right\}$ are orthogonal bases of U. Define

$$
\begin{aligned}
& \overrightarrow{\mathrm{p}}_{\mathrm{f}}=\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}}\right) \overrightarrow{\mathrm{f}}_{2}+\cdots+\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\|^{2}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}} \text { and } \\
& \overrightarrow{\mathrm{p}}_{\mathrm{g}}=\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{~g}}_{1}}{\left\|\overrightarrow{\mathrm{~g}}_{1}\right\|^{2}}\right) \overrightarrow{\mathrm{g}}_{1}+\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{~g}}_{2}}{\left\|\overrightarrow{\mathrm{~g}}_{2}\right\|^{2}}\right) \overrightarrow{\mathrm{g}}_{2}+\cdots+\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{~g}}_{\mathrm{m}}}{\left\|\overrightarrow{\mathrm{~g}}_{\mathrm{m}}\right\|^{2}}\right) \overrightarrow{\mathrm{g}}_{\mathrm{m}} .
\end{aligned}
$$

Then $\overrightarrow{\mathrm{p}}_{\mathrm{f}}, \overrightarrow{\mathrm{p}}_{\mathrm{g}} \in \mathrm{U}$ (since they are linear combinations of vectors of U) and $\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}}_{\mathrm{f}}, \overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}}_{\mathrm{g}} \in \mathrm{U}^{\perp}$ (by the Orthogonal Lemma). This implies that $\overrightarrow{\mathrm{p}}_{\mathrm{f}}-\overrightarrow{\mathrm{p}}_{\mathrm{g}} \in \mathrm{U}$, and $\left(\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}}_{\mathrm{g}}\right)-\left(\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}}_{\mathrm{f}}\right) \in \mathrm{U}^{\perp}$. However,

$$
\left(\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}}_{\mathrm{g}}\right)-\left(\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}}_{\mathrm{f}}\right)=\overrightarrow{\mathrm{p}}_{\mathrm{f}}-\overrightarrow{\mathrm{p}}_{\mathrm{g}}
$$

and thus $\overrightarrow{\mathrm{p}}_{\mathrm{f}}-\overrightarrow{\mathrm{p}}_{\mathrm{g}}$ is in both U and U^{\perp}. This is possible if and only if $\overrightarrow{\mathrm{p}}_{\mathrm{f}}-\overrightarrow{\mathrm{p}}_{\mathrm{g}}=\overrightarrow{0}$, i.e., $\overrightarrow{\mathrm{p}}_{\mathrm{f}}=\overrightarrow{\mathrm{p}}_{\mathrm{g}}$. This means that the computation of $\overrightarrow{\mathrm{p}}_{\mathrm{f}}$ and $\overrightarrow{\mathrm{p}}_{\mathrm{g}}$ does not depend on which orthogonal basis is used.

Definition

Let $\left\{\vec{f}_{1}, \vec{f}_{2}, \ldots, \vec{f}_{\mathrm{m}}\right\}$ be an orthogonal basis for a subspace U of \mathbb{R}^{n}, and let $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$. The projection of $\overrightarrow{\mathrm{x}}$ on U is defined as

$$
\operatorname{proj}_{\mathrm{U}}(\overrightarrow{\mathrm{x}})=\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}}\right) \overrightarrow{\mathrm{f}}_{2}+\cdots+\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\|^{2}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}} .
$$

Remark

1. if $U=\{\overrightarrow{0}\}$, then $\operatorname{proj}_{\{\overrightarrow{0}\}}(\vec{x})=\overrightarrow{0}$ for any $\vec{x} \in \mathbb{R}^{n}$;
2. if $\vec{x} \in U$, then $\operatorname{proj}_{\mathrm{U}}(\overrightarrow{\mathrm{x}})$ is also called the Fourier Expansion of $\overrightarrow{\mathrm{x}}$.
3. In Orthogonal Lemma

$$
\overrightarrow{\mathrm{f}}_{\mathrm{m}+1}=\overrightarrow{\mathrm{x}}-\underbrace{\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\mid \overrightarrow{\mathrm{f}}_{1}\right\|^{2}}+\frac{\overrightarrow{\mathrm{f}}}{\mathrm{t}}+\overrightarrow{\mathrm{f}}_{2}\right.}_{=\operatorname{proj}_{\mathrm{U}}(\overrightarrow{\mathrm{x}})} \frac{\overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}}-\cdots+\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\|^{2}} \overrightarrow{\mathrm{f}}_{\mathrm{m}}) .
$$

Orthogonal Bases

The Orthogonal Complement U^{\perp}

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

The Projection Theorem and its Implications

Theorem (Projection Theorem)
Let U be a subspace of \mathbb{R}^{n}, $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$, and $\overrightarrow{\mathrm{p}}=\operatorname{proj}_{\mathrm{U}}(\overrightarrow{\mathrm{x}})$. Then

1. $\vec{p} \in U$ and $\vec{x}-\vec{p} \in U^{\perp}$;
2. \vec{p} is the vector in U closest to \vec{x}, meaning that for any $\vec{y} \in U, \vec{y} \neq \vec{p}$,

$$
\|\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}}\|<\|\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{y}}\| .
$$

Proof.

1. By definition, $\overrightarrow{\mathrm{p}} \in \mathrm{U}$, and by the Orthogonal Lemma, $\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}} \in \mathrm{U}^{\perp}$.
2. Let $\vec{y} \in U, \vec{y} \neq \vec{p}$. By the properties of vector addition/subtraction

$$
\vec{x}-\vec{y}=(\vec{x}-\vec{p})+(\vec{p}-\vec{y})
$$

Since $\vec{x}-\vec{p} \in U^{\perp}$ and $\vec{p}-\vec{y} \in U$,

$$
(\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}}) \cdot(\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{y}})=0
$$

Hence, by Pythagoras' Theorem,

$$
\|\vec{x}-\vec{y}\|^{2}=\|\vec{x}-\vec{p}\|^{2}+\|\vec{p}-\vec{y}\|^{2}
$$

Since $\overrightarrow{\mathrm{y}} \neq \overrightarrow{\mathrm{p}},\|\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{y}}\|>0$, so

$$
\|\vec{x}-\vec{y}\|^{2}>\|\vec{x}-\vec{p}\|^{2}
$$

Taking square roots (since $\|\vec{x}-\vec{y}\|$ and $\|\vec{x}-\vec{p}\|$ are nonnegative),

$$
\|\vec{x}-\vec{y}\|>\|\vec{x}-\vec{p}\|
$$

Example

Let

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \vec{x}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
4 \\
3 \\
-2 \\
5
\end{array}\right]
$$

We want to find the vector in $U=\operatorname{span}\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \overrightarrow{\mathrm{x}}_{3}\right\}$ closest to $\overrightarrow{\mathrm{v}}$.
In a previous example, we used the Gram-Schmidt Orthogonalization Algorithm to construct the orthogonal basis, B , of U :

$$
\mathrm{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
2 \\
-1 \\
0
\end{array}\right]\right\}
$$

Example (continued)
By the Projection Theorem,

$$
\operatorname{proj}_{\mathrm{U}}(\overrightarrow{\mathrm{v}})=\frac{2}{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]+\frac{5}{1}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]+\frac{12}{6}\left[\begin{array}{r}
1 \\
2 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{r}
3 \\
4 \\
-1 \\
5
\end{array}\right]
$$

is the vector in U closest to $\overrightarrow{\mathrm{v}}$.

Problem

Let

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \vec{x}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \vec{x}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

and let $U=\operatorname{span}\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \overrightarrow{\mathrm{x}}_{3}\right\}$. Find an orthogonal basis of U , and find the vector in U closest to

$$
\overrightarrow{\mathrm{v}}=\left[\begin{array}{r}
2 \\
0 \\
-1 \\
3
\end{array}\right]
$$

Solution (Outline)
First use the Gram-Schmidt Orthogonalization Algorithm to construct an orthogonal basis of of U, and then find the projection of \vec{v} on U.

Solution (continued)
Gram-Schmidt orthogonalization with

$$
\begin{aligned}
& \overrightarrow{\mathrm{f}}_{1}=\overrightarrow{\mathrm{x}}_{1}, \\
& \overrightarrow{\mathrm{f}}_{2}=\overrightarrow{\mathrm{x}}_{2}-\frac{\vec{x}_{2} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}}, \\
& \overrightarrow{\mathrm{f}}_{3}=\overrightarrow{\mathrm{x}}_{3}-\frac{\vec{x}_{3} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}}-\frac{\overrightarrow{\mathrm{x}}_{3} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}}
\end{aligned}
$$

yields an orthogonal basis

$$
\mathrm{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right]\right\} .
$$

Thus the vector in U closest of $\overrightarrow{\mathrm{v}}$ is

$$
\operatorname{proj}_{\mathrm{U}}(\overrightarrow{\mathrm{v}})=\frac{1}{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]+\frac{3}{2}\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{r}
2 \\
0 \\
-1 \\
0
\end{array}\right] .
$$

Problem

Find the point q in the plane $3 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=0$ that is closest to the point $\mathrm{p}_{0}=(1,1,1)$.

Solution
Recall that any plane in \mathbb{R}^{3} that contains the origin is a subspace of \mathbb{R}^{3}.

1. Find a basis X of the subspace U of \mathbb{R}^{3} defined by the equation $3 x+y-2 z=0$.
2. Orthogonalize the basis X to get an orthogonal basis B of U.
3. Find the projection on U of the position vector of the point p_{0}.

Solution (continued)

1. $3 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=0$ is a system of one equation in three variables. Putting the augmented matrix in reduced row-echelon form

$$
\left[\begin{array}{lll|l}
3 & 1 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & \frac{1}{3} & \left.-\frac{2}{3} \right\rvert\, 0
\end{array}\right]
$$

gives general solution $\mathrm{x}=\frac{1}{3} \mathrm{~s}+\frac{2}{3} \mathrm{t}, \mathrm{y}=\mathrm{s}, \mathrm{z}=\mathrm{t}$ for any $\mathrm{s}, \mathrm{t} \in \mathbb{R}$. Then

$$
\mathrm{U}=\operatorname{span}\left\{\left[\begin{array}{r}
-\frac{1}{3} \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
\frac{2}{3} \\
0 \\
1
\end{array}\right]\right\} .
$$

Let

$$
X=\left\{\left[\begin{array}{r}
-1 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right]\right\}
$$

Then X is linearly independent and $\operatorname{span}(\mathrm{X})=\mathrm{U}$, so X is a basis of U .

Solution (continued)

1. Use the Gram-Schmidt Orthogonalization Algorithm to get an orthogonal basis of U:

$$
\overrightarrow{\mathrm{f}}_{1}=\left[\begin{array}{r}
-1 \\
3 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{f}}_{2}=\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right]-\frac{-2}{10}\left[\begin{array}{r}
-1 \\
3 \\
0
\end{array}\right]=\frac{1}{5}\left[\begin{array}{r}
9 \\
3 \\
15
\end{array}\right] .
$$

Therefore,

$$
\mathrm{B}=\left\{\left[\begin{array}{r}
-1 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
5
\end{array}\right]\right\}
$$

is an orthogonal basis of U .

Solution (continued)
3. To find the point q on U closest to $\mathrm{p}_{0}=(1,1,1)$, compute

$$
\begin{aligned}
\operatorname{proj}_{\mathrm{U}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] & =\frac{2}{10}\left[\begin{array}{r}
-1 \\
3 \\
0
\end{array}\right]+\frac{9}{35}\left[\begin{array}{l}
3 \\
1 \\
5
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{l}
4 \\
6 \\
9
\end{array}\right]
\end{aligned}
$$

Therefore, $\mathrm{q}=\left(\frac{4}{7}, \frac{6}{7}, \frac{9}{7}\right)$.

Orthogonal Bases

The Orthogonal Complement U^{\perp}

Definition of Orthogonal Projection

The Projection Theorem and its Implications

Projection as a Linear Transformation

Projection as a Linear Transformation

Definition

Let V and W be vector spaces, and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ a linear transformation.

1. The kernel of T (sometimes called the null space of T) is defined to be the set

$$
\operatorname{ker}(\mathrm{T})=\{\overrightarrow{\mathrm{v}} \in \mathrm{~V} \mid \mathrm{T}(\overrightarrow{\mathrm{v}})=\overrightarrow{0}\} .
$$

2. The image of T is defined to be the set

$$
\operatorname{im}(T)=\{T(\vec{v}) \mid \vec{v} \in V\} .
$$

Theorem
Let U be a fixed subspace of \mathbb{R}^{n}, and define $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ by

$$
T(\vec{x})=\operatorname{proj}_{\mathrm{U}}(\overrightarrow{\mathrm{x}}) \text { for all } \overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}} .
$$

Then

1. T is a linear operator on \mathbb{R}^{n};
2. $\operatorname{im}(\mathrm{T})=\mathrm{U}$ and $\operatorname{ker}(\mathrm{T})=\mathrm{U}^{\perp}$;
3. $\operatorname{dim}(\mathrm{U})+\operatorname{dim}\left(\mathrm{U}^{\perp}\right)=\mathrm{n}$.

Proof.
If $\mathrm{U}=\{\overrightarrow{0}\}$, then $\mathrm{U}^{\perp}=\mathbb{R}^{\mathrm{n}}$, so $\mathrm{T}(\overrightarrow{\mathrm{x}})=\overrightarrow{0}$ for all $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$. This implies that $\mathrm{T}=0$ (the zero transformation), and the theorem holds.

Now suppose that $\mathrm{U} \neq\{\overrightarrow{0}\}$. We first prove (3) based on (1) and (2):
3. Since T is a linear transformation - part (1), the Rank-Nullity Theorem implies that

$$
\operatorname{dim}(\operatorname{im}(\mathrm{T}))+\operatorname{dim}(\operatorname{ker}(\mathrm{T}))=\operatorname{dim} \mathbb{R}^{\mathrm{n}}=\mathrm{n}
$$

Applying the result from part (2), we get

$$
\operatorname{dim}(\mathrm{U})+\operatorname{dim}\left(\mathrm{U}^{\perp}\right)=\mathrm{n}
$$

Proof. (continued)

1. Let $\mathrm{B}=\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$ be an orthonormal basis of U . Then by the definition of $\operatorname{proj}_{\mathrm{U}}(\overrightarrow{\mathrm{x}})$,

$$
\begin{equation*}
\mathrm{T}(\overrightarrow{\mathrm{x}})=\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}\right) \overrightarrow{\mathrm{f}}_{2}+\cdots+\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}} \tag{1}
\end{equation*}
$$

(since $\left\|\vec{f}_{\mathrm{i}}\right\|^{2}=1$ for each $\mathrm{i}=1,2, \ldots, \mathrm{~m}$). Let $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}} \in \mathrm{U}$ and $\mathrm{k} \in \mathbb{R}$. Then

$$
\begin{aligned}
\mathrm{T}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})= & \left((\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}}) \cdot \overrightarrow{\mathrm{f}}_{1}\right) \overrightarrow{\mathrm{f}}_{1}+\left((\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}}) \cdot \overrightarrow{\mathrm{f}}_{2}\right) \overrightarrow{\mathrm{f}}_{2}+\cdots+\left((\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}}) \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}} \\
= & \left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}+\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\mathrm{f}}_{1}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}+\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\mathrm{f}}_{2}\right) \overrightarrow{\mathrm{f}}_{2}+ \\
& \cdots+\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}+\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}} \\
= & \left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\mathrm{f}}_{1}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}\right) \overrightarrow{\mathrm{f}}_{2}+\left(\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\mathrm{f}}_{2}\right) \overrightarrow{\mathrm{f}}_{2}+ \\
& \cdots+\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}}+\left(\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}} \\
= & {\left[\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}\right) \overrightarrow{\mathrm{f}}_{2}+\cdots+\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right] } \\
& +\left[\left(\overrightarrow{\mathrm{y}}^{2} \cdot \overrightarrow{\mathrm{f}}_{1}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\mathrm{f}}_{2}\right) \overrightarrow{\mathrm{f}}_{2}+\cdots+\left(\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right] \\
= & \mathrm{T}(\overrightarrow{\mathrm{x}})+\mathrm{T}(\overrightarrow{\mathrm{y}}) .
\end{aligned}
$$

Thus $\vec{x}+\vec{y} \in U$, so T preserves addition.

Proof. (continued)

1. (continued) Also,

$$
\begin{aligned}
\mathrm{T}(\mathrm{k} \overrightarrow{\mathrm{x}}) & =\left((\mathrm{k} \overrightarrow{\mathrm{x}}) \cdot \overrightarrow{\mathrm{f}}_{1}\right) \overrightarrow{\mathrm{f}}_{1}+\left((\mathrm{k} \overrightarrow{\mathrm{x}}) \cdot \overrightarrow{\mathrm{f}}_{2}\right) \overrightarrow{\mathrm{f}}_{2}+\cdots+\left((\mathrm{k} \overrightarrow{\mathrm{x}}) \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}} \\
& =\left(\mathrm{k}\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}\right)\right) \overrightarrow{\mathrm{f}}_{1}+\left(\mathrm{k}\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}\right)\right) \overrightarrow{\mathrm{f}}_{2}+\cdots+\left(\mathrm{k}\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right)\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}} \\
& =\mathrm{k}\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}^{\prime}\right) \overrightarrow{\mathrm{f}}_{1}+\mathrm{k}\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2} \overrightarrow{\mathrm{f}}_{2}+\cdots+\mathrm{k}\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right. \\
& =\mathrm{kT}\left[\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}_{2}}\right) . \overrightarrow{\mathrm{f}}_{2}+\cdots+\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right] \\
&
\end{aligned}
$$

Thus $k \vec{x} \in U$, so T preserves scalar multiplication.
Therefore, T is a linear transformation.

Proof. (continued)
2. By equation (1), $T(\vec{x}) \in U$ because $T(\vec{x})$ is a linear combination of the elements of $\mathrm{B} \subseteq \mathrm{U}$, and therefore $\mathrm{im}(\mathrm{T}) \subseteq \mathrm{U}$. Conversely, suppose that $\overrightarrow{\mathrm{x}} \in \mathrm{U}$. By using Fourier Expansion, $\overrightarrow{\mathrm{x}}=\mathrm{T}(\overrightarrow{\mathrm{x}})$, and thus $\overrightarrow{\mathrm{x}} \in \operatorname{im}(\mathrm{T})$. Therefore $U \subseteq i m(T)$. Since $\operatorname{im}(T) \subseteq U$ and $U \subseteq i m(T), \operatorname{im}(T)=U$.

To show that $\operatorname{ker}(\mathrm{T})=\mathrm{U}^{\perp}$, let $\overrightarrow{\mathrm{x}} \in \mathrm{U}^{\perp}$. Then $\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{i}}=0$ for each $\mathrm{i}=1,2, \ldots, \mathrm{~m}$, so $\mathrm{T}(\overrightarrow{\mathrm{x}})=\overrightarrow{0}$, implying $\overrightarrow{\mathrm{x}} \in \operatorname{ker}(\mathrm{T})$. Thus $\mathrm{U}^{\perp} \subseteq \operatorname{ker}(\mathrm{T})$. Conversely, let $\vec{x} \in \operatorname{ker}(T)$. Then $T(\vec{x})=\overrightarrow{0}$, so $\overrightarrow{\mathrm{x}}-\mathrm{T}(\overrightarrow{\mathrm{x}})=\overrightarrow{\mathrm{x}}$; but, $\overrightarrow{\mathrm{x}}-\mathrm{T}(\overrightarrow{\mathrm{x}}) \in \mathrm{U}^{\perp}$ (Projection Theorem), so $\overrightarrow{\mathrm{x}} \in \mathrm{U}^{\perp}$, implying that $\operatorname{ker}(\mathrm{T}) \subseteq \mathrm{U}^{\perp}$. Since $\mathrm{U}^{\perp} \subseteq \operatorname{ker}(\mathrm{T})$ and $\operatorname{ker}(\mathrm{T}) \subseteq \mathrm{U}^{\perp}, \operatorname{ker}(\mathrm{T})=\mathrm{U}^{\perp}$.

